故障标准处置流程(SOP)

流程编号 发布日期		编审	分发	
SOP-737-21-002	2017.3.6	维修控制部技术支援中心	MCD、基地技术组、换季小组	

故障名	称	空调性能数据超限的标准处置流程						
机型		737NG	故障类别	■常见故障 □重要故障 □重大故障				
ATA 章	节	21	系统	■一般系统 □重要系统				
风险评	估							
可能性			严重性					
风险值			风险等级					
控制要求								
处置流	程内	容						
1	背景	로						
		春季 737NG 机队易遭受北方飘絮的影响,在此期间,易发生散热器性能下降导致组件						
	和管	管道温度高的问题。当前的管控目标值为组件温度 38 度以下,管道温度 8 度以下。受南						
	方夏	夏季高温天气影响(环境温度 32 度以上),极限值为组件温度 40 度以下,管道温度 10						
	度以	以下。在每日数据监控和机组报告中,如果出现了大于以上监控目标的时候。任一管道						
	温度	乏大于极限值的情况,或跳开情况,需通过技术决策的形式来确定航班的保障。						
1 1	现象	泉判断						
2. 1	向机	几组了解的情况						
	驾驶	史舱和客舱的真实温度感受						
	管道	道和组件温度情况。(组件温度在 45 度以上即可能跳开,组件如果在 50 度以上通常是						
	由于	于 TCV/STCV 热气空气直接混入了)						
0.0	在空	至空中是否有冲压进气门全开灯点亮的情况,						
2. 2	向班	1现场工作者了解以下情况						
	驾驶	驶舱和客舱的真实温度,出风口的风量情况。						
	单组	组件高流量全冷位5分钟之后的组件和管道温度。						
	TCV	和 STCV 的活门在全冷位时,是否	在全关位。					
	检查	查 TCV 和 STCV 上下有管道温度。如果无明显温降,基本上可以判断活门本体存在漏气,						
	已经	至不受控。表象是组件温度 50 度以上,但组件并不跳开。						
=	过站	过站处理						

3. 1	
3. 1	在外站情况下,完成另一侧空调的单组件高流量全冷位测试,稳定 5 分钟,观察另一侧组
	件性能情况。
3. 2	同时通知签派按单组件油量和航路进行申请,能否放行按组件测试结果来判断。
3. 3	查询双侧组件近7天的空调性能历史数据,与现场实测的值加以对比判断。主要目地在于
	能得到工作正常的一侧组件性能是否有良好的履历,降低空中跳开的风险。
3. 4	如另一侧性能良好,组件温度在40度以下,管道温度在10以下,通过技术决策流程,决
	策放行。
	注意: EFLOW 构型不能单组件放行。
3. 5	如果另一侧性能也超过的允许值,则停场进行排故。
3. 5. 1	通常组件温度超过 50 度,管道温度超过 20 度的情况,都是由于 TCV/STCV 漏气导致的。
3. 5. 1	针对 TCV 卡滞导致的漏气,可以通过锁活门关位保留放行的方式处置。在放行前需再次检
	查组件和管道温度是否满足控制要求,如不满足背景描述中的性能控制条件,需执行进一步排故
	工作。
3. 5. 1	如果是由于 TCV 在关位的情况下仍然向下游漏气的情况,有料的情况下需更换活门,无料
. 2	的情况下可以通过将前后舱配平活门和 TCV 对串,保留配平活门放行的方式来执行。
3. 5. 1	在完成活门更换或对串后,需再次执行性能验证,如不满足背景描述中的性能控制条件,
. 3	需执行进一步排故工作。
3. 5. 1	如果是由于STCV漏气导致,只能单组件放行,如无法放行,参考SOP-737-21-3中的检查和处理措施执行。
3. 5. 2	安排执行双侧散热器反吹工作,正常情况下散热器反吹后的组件温度可降低5度以上。当满
	足3.4中的放行条件时,通过技术决策流程,决策放行。
四	彻底处理:适用于无法过站放行或航后彻底排故的情况。
4. 1	查询散热器装机历史,目前机队的散热器更换周期是9个月,如果是9个月以上的未更换散热器,安排进行更换。
4. 2	通过反吹工作,未达到背景说明中的控制目标时,需执行散热器温降和ACM温升温降测量(经
	验值为: 主级散热器温降>40; 次级散热器温降>30; ACM压气机温升>40; ACM涡轮温降>25),
4.0	更换性能衰退的散热器或ACM。
4. 3	从排气口,接近检查ACM风扇叶片是否存在叶片丢失和损伤。
4.4	对于TCV漏气锁活门或者对串配平活门保留的,需在航后第一时间更换活门。
五	信息通报要求
/	
六	特别控制要求
6. 1	有一类特殊的情况,在进行控制器自检时,手册对于引气和组件电门位置均有要求。自检过程中活门会作动一个来回,在此期间如果不关闭引气,TCV/STCV/配平活门在作动打开时,将有大量的热气进入空调,造成空调性能不好的假象。有时会伴随有区域温度灯均点亮。需在工作中加以注意。
七	修订历史
<u> </u>	

/	/			